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/ INTRODUCTION

A the

The impact of meteoroids on a spacecraft will depend on the
meteoroid distribution and the location and the state of motion of the

spacecraft. One can argue on an intuitive basis that the gravitational

field of the earth will concentrate the meteoroids in the vicinity of
the earth and that meteoroids near the earth will be moving faster
because of the gain in kinetic energy available from the earth's gravi-
tational field. 1It\is evident also that motion of the spacecraft will
change the apparent direction and rate of the meteoroid impact, as
well as altering the energy and momentum exchange on impact. If
the meteoroid distribytion is not isotropic in direction and the space-
craft is not a sphere,

it is quite possible that the orientation of the

spacecraft can be impoftant in determining the meteoroid impact rate.
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In discussing the several phenomena of interest, it is con-

venient to 'employ a *di stribution function N(T,V) in position and

velocity space such that the expression,

N(r; ¥) dr dv, (1)

represents the number of particles contained in the six-dimensional
element of volume dr dv, where T is the position vector, drawn
from the earth, and v is the velocity vector. Because tne mass of
a particle does not affect its motion in the gravitational field of the

earth, the distribution over mass is not considered. The particle den-

sity N(T) is given by the integral of N(Tr, V) over velocity space, i.e.,

N(r) = [fNED @ . (2)

The particle flux, numerically equal to the impact rate on a sphere

which presents unit area to all directions, is defined as

¢ (r) = [[fvNEV) av (3)

where v is the magnitude of the velocity vector v . The directional

flux, or vector current density J(r,V) is given by

Jr, ¥) = [ VNV & (4)




where Vv is a unit vector along Vv

Flux is a generalization of the current concept and reduces to
the magnitude of the current vector when the corpuscles are incidént
upon an infinitesimal surface or volume from a single direction. When
particles are incident simultaneously from two or more directions —as
they are in meteoric, cosmic ray, nuclear radiation, and all isotropic
fields —one can peform a useful summation' over all of the currents by

defining the flux as the

total particle path length traced out through a unit

volume, at the point of interest, duringunit time.

Since a cylinder whose base is of unit area, and whose height
is | Vil , containing Py particles per unit volume, can be regarded

as flowing through the unit volume during unit time, where

V.
i

P4

the velocity of the particles incident from ith direction

the density of the particles incidentfrom ith direction

and the path length generated within the unit volume during unit time is

clearly pi v, » we can write the flux ¢ as

¢=Zp, V. =Z lJil (3-, the current due to parhclcg
it 1 i 'from i direction)

In the case of particles incident from a single direction, this re-

d

to the current, during unit time,i.e., ¢ - IJI

uces to the current J or numhber of particles creossing uni




The number of particles crossing a unit area per unit time is
given by

Ir, Q)= [[@ T(r,9) d (5)
where §& is the outward normal unit vector to the area and dw is the
element of solid angle. The integral over w is to be carried out over
a 27 solid angle to obtain the impact rate on one side of the area.

The problem posed is that of determining how N(r,v) and
the associated quantitites N(T), ¢ (T), J(T, ¢) and J(T, Q) are changed
by the presence of the earth and the motion of a satellite designed to
measure them. The law of energy conservation permits us to write

v o+ 2yM/r = v*(r) (6)

- where v is the particle speed at infinity, ¥ is the gravitational con-
stant, M is the mass of the earth, and v(r) is the particle speed at
a distance r from the earth. The law of conservation of angular
momentum permits us to write

l?x;|= av, (7)

where a is the impact parameter and r and v are the position and
velocity vectors at any point on a particle orbit.

From Eq. (6), we see tlat the impact problem is more severe
near the earth than in free space, because of the additional speed as-
sociated with the entry of the particle into the gravitational field of
the earth. Further, we can see that a monoenergetic distribution at
infinity is monoenergetic everywhere, with the correct speed given
by Eq. (6). In Fig. 1, the dependence of kinetic energy on distance from
the earth is shown graphically. The escape velocity Ve is given by

v, = ‘IZVM/rE = 1.1 x 10* m/sec, (8)

where r_, is the radius of the earth, has been chosen as a convenient
reference velocity. Figure 1 illustrates well the expectation that high
velocity meteoroids are influenced relatively little by the earth.
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APPLICATION OF LIOUVILLE'S THEOREM
TO MONOENERGETIC ISOTROPIC DISTRIBUTIONS

The Liouville theorem states that the density of particles in
the neighborhood of a given particle in phase space does not change
as a result of the particle motion. Therefore, if (-171,;1) and (;z ,;z)

are two points in phase space which lie on a particle trajectory, then
N(ry,vi) = N(rz,ve) . (9)

The distribution function N(r,v) may be taken as the phase space
density, although it is more common to use the momentum rather than
the velocity coordinates. The Liouville theorem can be applied to
show that, if the distribution of particles is uniform, isotropic in
direction, and monoenergetic at infinity, it is monoenergetic and iso-
tropic everywhere. This can be seen by examining the possible tra-
jectories which can be drawn through a point located by the position
vector r , which locates the point relative to the earth. Through
this point, trajectories can be drawn in all possible directions and

traced to infinity, subject only to the constraint that everywhere

T) = ve= V2YM/r , (10)

ve being the velocity of escape at any point T . _
1f the two points in Eq. (9) are considered to be located at r and at

infinity, every possible direction at T can be connected to infinity,
where the distribution is isotropic, monoenergetié, and uniform, and
where the particle density in phase space, by the Liouville theorem,

is the same as at r .




Let us assume that the distribution function at ;1 in Eq. (9)

can be written in the form of a Dirac delta function,
N(ry,vq) = cbélvy - v(rp)] . (11)

where c¢ is a constant, v; is the variable of distribution, and v(r,)
is a speed parameter. Equation (11) states that the distribution at
;1 is isotropic, spherically symmetric, and monoenergetic, with all
particles having a speed v(r,) . In terms of spherical coordinates,

the element of volume in velocity space can be written as
d-‘;l = Vlz dVl sin 91 d91 d¢1 . (12)

From Eq. (2) the particle density is given by

! _ V1=°° 91=7r ¢1=27r

N(r,) '—'f f »& C6['\’1 'V(rl)]vlz dv,
V1=0 91=0 l=0
sin 6,d0,d¢, = 47cv?(r)) (13)

At ;z , another point on a trajectory through 1, , Egs. (2), (9), (11),
and (12) permit us to write an expression for the particle density in

the form

vy = 92=7r ¢2=27r

N(r;) = f f f N(T,,V,)vy? sin 6, dv, df, d¢é,
v,=0 “6,=0 “9,=0

V2=°° 92: T ¢2: 27T
' f N(?l,vl) VZZ Sin 92 dVZ dez d¢2
v,=0 “6,=0 “¢,=0

= J



}72:00 6,=m d)Z: 2T
= j { colv - v(r) v sin 6 dv df d¢
j 1 2 2 2 2 2
v =0 =0 b =0
V, = o0
= 4m cf 6'[V1 - vl(rl)] VZZ dv, (14)

If, in particular, we assume that the distribution represented
by Eq. (11) results from an isotropic, uniform, monoenergetic dis-
tribution at infinity and that the particle speeds v, and v, are related

through Eq. (6) for the conservation of energy, we have

v - 2yM/x = vi-2vM/rx, (15)
so that

vdv = v dv (16)

11 2 2

The substitution of Eqs. (15) and (16) into Eq. (14) yields '

v, =

N(?)=4c/ 5[vl-v(r)] vzv dvl'

1

v, =2 M] (1:z - T )/1:1 rz)]

47cv(r,) vir) (17)

The ratio of particle densities at ;z and r is given by Eqs. (13)

and (17) as

N(r,) /N(r)) = v(zr,)/v(r)). (18)

lalternatively this can be regarded as transformation —i.e., Jacobian
J(v, /v,) = ¥ /v, to obtain the same result.




If T, is assumed to be at infinity and T, is arbitrary,the application

of Eq. (6) results in

I

N(T)/N(o) = v(T)/v() = [1+27M/rv2)", (19)
In a like manner, the ratio of fluxes is found to be
¢(r)/d() =[1+27M/rvi]. (20)

In the vicinity of a finite earth, the meteoroid density and flux
predicted by Eqs. (19) and (20) are reduced by the shielding effect of
the earth, In Fig., 2, the point P at which the flux is to be computed
is located at a distance r from the earth. Particles which would
have arrived at an angle of less than em have been intercepted By
the earth., The correction factor F for Eqgs., (19) and (20), for the
case of isotropic radiation, is just the ratio of the solid angle over
which radiations can arrive to the total solid angle about the point.

Therefore

F = f sin 6d6 f sin 6 d0 = 3[1 + cos 6_J](21)
0

Using Eq. (7), the definition of the vector cross product, and
the fact that r and v are normal at the point of closest approach

rg » as shown in Fig. 2, Gm may be defined by the equation,

a Vo T TpVg = r v(r) sin Gm , (22)
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where a is the impact parameter associated with the grazing orbit,
and the conservation of momentum is applied to three points located

on the grazing orbit, From Eqs. (6) and (22),

sin 0

[rg vg] /[r v(r)]

1
r 12
_TE | v& + 2YM/rE
T or ngo + Z'YM/r (23)
and .
F = (1+cos 6_)/2 = (1+[1 -sin?6_]% )/2
1] 2ivh +27M/ %\{
- = - | IE % 'E
) 11 + [_1 ( T ) vi + 2YM/r )] j (24)

*
With this correction factor, Eq. (20) now becomes

d(r)/dp() = [1+2YM/r 2] 1+ l‘1 - ErE i ::2 : gﬁ;?)? 2
ST ' (25)

By making thé substitutions,
X = r/rE s (26)
v = 2YM/rg | (27)
u = Ve/ve (28)

we can write Eq. (25) as

~ 291 2729
VU, PpP.o2ci=-oc9,
e

*Compare with S. F. Singer; Nature, Vol. 192, No. 480
October 1961, where several of the techniques used h
in a less extensive development.

11
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In Fig. 3, ¢(r)/¢(~) is graphed as a function of x with u

as a parameter,

In dealing with particles in orbit about the earth, let us make
the assumption that the distributions are isotropic in direction except
for directions which are excluded because the corresponding particle
orbits intersect the earth. For the particle to be captured, we must
have v(r) = 2YM/r everywhere, which corresponds to a negative
total energy. The results are much the same as before, except that
we can no longer choose the reference point at infinity and we must
exclude both incoming and outgoing particles whose orbits intersect

the earth.

If r, is chosen as the reference point, Eq. (20) is written as

¢ (1) /¢ (r,) = Fvi(r)/v (30)

where F is a correction factor and v, is the speed at r, . Because

incoming and outgoing orbits should be e iminated from the flux con-

tributions, at both the reference point and the observation point, Eq, (21)

becomes |
0=m1-6m | 6=7-06o cos 0
F o= singd 6| [ sinfdf = ———p= , (31)
6=6_ i76=06_ o
From Eq. (22)
eV = r v, sin 60 = rv s1n6m (32)

wheref, and 6Oy, define the cones of intercepted trajectories at

r, and r respectively as shown in Fig, 2, with

12
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60< <7 - 60 N sin 90 = rEVE/rOVO ’ (33)

and the permissible directions at r given by

0 <0<7m -0, , sin 0, = rgvg/rv . (34)
Therefore
1 =1
cos 0 TRV 1‘2-2;- 'TEVE e
= m - N b O 8 S TR b OB -V 35
F = oste = v i T v, (32)
and
- 1 g~ ‘“~-li
: 2i ‘L iZ'z.a /f TevE 2
=Y iy JCIEVE G 7y o 36
¢(r)/¢(ro) 1“ v '1 VTV E fl il i.rovo . (36)
i i
From Eq. (6)
vZ - 2yM/ry = vi -2YM/r (37)
so that
vi o= v - 2YM(1/rg - /) (38)
and
2 2 _ - 3
Ve v Z‘YM(l/ro l/rE) (39)

Using Eqs. (26) and (27) and defining u and x, by the equations

(o]

u = Vo/ve . (40)

ro/rE ’

S%
e}
|

14




we may use Eqs. (38) and (39) to write Eq. (36) as

(W2 + 1 -1/x) 72

)/¢( ) = 1+ xu® - x/xo 1 - x(u2x + 1 -X/)go) ! (42

¢ (r ol T xu? 1 u + 1 - 1/x9 | )
- - xéuZ -

Figures 4 and 5 show plots of ¢/(r)/¢(ro) as a function of
radial distance from the earth for r, equal to two and four earth

radii,

TREATMENT OF MONODIRECTIONAL
MONOENERGETIC DISTRIBUTIONS

A function describing the distribution of meteoroids in position
and velocity space may be approximated by the superposition of a group
of monodirectional monoenergetic distributions which have been given
proper weight. In treating neutron and gamma transport problems,
for example, it is common practice to approximate continuous dis-
tributions in energy by a number of weighted energy groups. Computers
are used to obtain a solution for each energy group, and the solutions

are added to yield a total solution.,

Following the same practice, let us assume that we have an
infinite plane emitting meteoroids in the positive x direction as
shown in Fig.‘6. As the meteoroids approach a center of force, they
increase in speed and are deflected from their straight line paths.
The speed of the meteoroid as a function of position relative to the
gravitating body.is given by Eq. (6), which is a statement of the con-

servation of energy.

The radiation intercepting a spherical surface of radius r can

be computed simply from angular momentum considerations by using

15
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Eq. (7). Equating the angular momentum at infinity to the angular

momentum at the point of closest approach for a particle which just

grazes the sphere of radius r , we obtain

Ved = vir)r . (43)

From Eq. (6)

=

Wr) = (27M/r + v} (44

so that, combining Eqs. (43) and (44) we have
1
a = (2‘}’M/r+v0§)2 r/voo . (45)

All particles with smaller impact parameters will intersect the sphere
of radius r , If the infinite plane emits meteoroids normally at the
rate of c particles per unit area per unit time with speed v, , the
number intersecting the sphere of radius r is.the number with im-

pact parameters less than a, or

1 = 7ma%?c = 7(1 + 2‘}/M/rv£)crz (46)

The number intersecting the earth is given similarly by

= 2 . 2y 2 _ 2 2/ 2
IE = Tag c = 7T(1+2'YM/rEv°°)rEc =Tro ¢ 1 + ve/voo]

(47)

A plot of earth intercepts as a function of velocity at infinity is given
in Fig, 7. The same result (Eq. (20)) is obtained for the isotropic
case, and this plot indicates the magnitude of some of the corrections

needed for radar observations of incoming meteoroids.

19
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The flux ¢(;) at a point can be conveniently approached in
terms of the path length per unit time per unit volume traced out by
the particles as they move along trajectories, Imagine a differential
volume 47r?dr penetrated by a trajectory as in Fig. 8. The path
length created in this volume by a particle rnoving along the trajectory

is given by

i

2

2ds = 2-/dr? + r2de? = 2|l + r?(d6/dr)?| dr . (48)
]

The factor of two is included because the orbital symmetry requires
that the particle have the same track length on emerging from the
shell. Althoﬁgh the track length can be evaluated formally from Eq.
(48) and the orbit equation, it is easier to use the conservation of

momentum equation and write, from Eq. (7),
|;x;|= av, = rvsina (49)
where @ is as shown in Fig, 8. Therefore,
sin @ = avco/rv(r) . (50)
From Fig. 8
dr = ds cos @ (51)

and

|#=

ds

t2
dr/cos @ = dr/ {l - sin?‘arjE

1
212
} (52)

dr/ %1 - (avoo/rv(r)

21



WNLNIAWOW
dVINONV 40 NOILVAYEASNOD 3HL OL sSPp HLION3IN

MOVYL 40 LN3IW3T13 3HL 40 dIHSNOILY13Y¥ 3HL

J3j3woiod joodwi 0

D $0J Sp
®5 b

1p
D UIS A 1

%N

sp

g b14

22




The path length contributed by particles with impact parameters between

a and a + da is given by

(B

. .2
47a dads ¢ = 4ma c dadr/ll - (avoo/rv)zi! (53)

The total path length in the differential element of volume 47 rédr is
found by integrating this expression with respect to a and subtracting
the part which intersects the earth. The average flux <¢> over the
surface is this integral divided by 47r?dr , viz.

1
: 12
i

)'"‘ a=a r
<¢> = f 47racdadr/ 1 -(avoo/rv)zl'
\ a=0 i -

i

amap - a
- f 27acdadr 1-(avoo/rv)2l > 4mridr
i

a=0 ) (54)
or, since the flux at infinity is equal to ¢ ,
1
W :
L 2
<$>/¢ . = F\ f ada I1 - (avoo/rv)]
! a=aE - N
N
1~
1 a=ag 12
LT L [1 Savg /e S (59
a=0 : f
where, from Eq. (43),
a = vr/vOo . (56)
(57)

a = v..r / At
E | E / Yoo

23



and

o0

1 1
2712 12
jada/ {1 -2 | = (?)2 {1 -(avoo/rv)z} (58)

Therefore,
, .
2 2 2
<¢> [ () = %(é} {1+I1 - {L%VE) } (59)

This is the same result as for the isotropic case, as expected.

24




Structure of the Flux Field for the Monoenergetic, Monodirectional Case
Rasic Trajectory Geometry and Perspective

Consider the physical situation r;epresented in Fig. 6 wherein
a very broad stream of particles, monodirectional and monoenergetic
at infinity, is incident upon a sphere of radius, r , centered about the
source of an attractive inverse square central force field. We begin
our analysis by considering a very thin filament of the stream, and
we recognize by virtue of the axial symmetry of the distribution de-
picted in Fig. 6 that the behavior of this filament is typical of a set

of trajectories which form the elements of a cylindrical shell at infinity.

Let J(o) represent the magnitude of the flux vector at infinity;
and let "a'" be the value of the impact parameter which characterizes
all of the trajectories forming a cylindrical shell of radius "a" . At
a point in the vicinity of the center of force, the flux vector will be
denoted by J(r) . In particular, consider the particle current crossing
a unit area of the sphere about the attractive center. The trajectories
composing this current are characterized by some value 'a'" of the
impact parameter. If dA be the elemental area, and @ the angle
between J(r) and -dA , as shown in Fig. 9, this current is

-J(¥) - dA = J(r) dA cos @ = 2mada J() (60)
Writing the element of area dA in spherical coordinates as

dA = 27r% sin 6 d6 (61)

25
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we have after rearrangement,

ada
r2'sin @ cos & d@

J(T)/I(0)

(62)

where «a is the angle between a trajectory tangent vector and the
radius vector T at the point where the trajectory intersects the sphere

of radius, r .
From Eq. (50) and Fig. 8,

Veod _ ave _ a
rv(r)  r[vE +2yM/rB T rll +2/ryks

(63)

where we have related the velocities at r and at infinity by means of

Eq. (6), and have introduced an inverse distance

v (64)
From Eqs. (63) and (64)
- 1
1 2.2 2,212
, ré + 2ry-yéa
cos ¢ = +(1 - sin?a)f = [l erz_'_gyg
212
2.2

- |Yyr + Zry-yza. 65
[ y¥e+ 2ry ) (65)

We postulate! that the trajectories are hyperbolae (unbound

particles) of the form

N

r o= ya* / {14[1+y*a?] cos (6-6,) ) . (66)

! The general equation of a conic. Goldstein, H., Classical Mechanics,
Addison-Wesley, p. 78, 1959,

27



where the eccentricity € is given by
e =Ty = TH KR (67)

By using the requirement that r must go to infinity as 0

approaches zero, it is seen that

1 + € cos(Oi) =0 (68)
or
cos 0y = -1/€ ;
0 = cos”l (-1/¢) = cos"l(_u%:ﬁ—,). (69)

The trajectory is closest to the origin when 6 = 9k . This minimum

r , or perigee r, » occurs when the denominator of Eq. (66) is

maximum; i.e. when 6= 0y ; and

. ya
= 70
PTTre (70)
The angle 6 is a monotonic decreasing function of k ; k = 0 corre-

sponds to a trajectory whose perigee is at 6 = 7 , while very large

k values correspond to 6y but slightly larger than 7/2,

Equation (66) can be regarded as of the classical form

a(e® - 1) (71)

=1+€cosa

28




in terms of which the theory of conics is usually discussed; "a’" is
called the semi-transverse axis of the hyperbola. In our case € >1,
and with our choice for the 6 = 0 direction, namely, that direction
anti-parallel to the incident stream at infinity, Eq. (71) represents
a pair of hyperbolae whose major branch (i.e. r >0) has the forc.e

center as an internal focus.

We can now straightforwardly make the following geometrical
identifications, and in so doing we point out that the significance of
a given k value is that it selects a set of trajectories possessing in
common, one focus, a line of symmetry (0 = 6) , and the same

asymptotes.

The half angle B between the asymptotes is given by

2 '
tan f8 =?Y‘I’\j[° =~/-1:= va . (72)

Defining the distance between the perigee of any pair of hyperbolae

(major branch and its conjugate) to be 2a’, one finds that

’ 1 Y™M
= — = —— 3
a - vz (73)
and
2¢d = 2¢fy = —2‘/1_3’+k—

is the distance between the source and the other focus for any pair of
hyperbolae. These relationships are shown in Fig. 10, where they are

also displayed in terms of k and the impact parameter.

29
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As energy varies at constant k = y*a? , the distance at perigee
and distance to the center all vary inversely by the same factor; this
is not contrary to physical common sense (i.e. the greater the energy,
the greater the perigee distance) because '"a'', the impact parameter,
is varying inversely with y . As either y is varied at a fixed impact
parameter, or as ''a'", the impact parameter; is varied at constant
energy Yy , one obtains a continuous spectrum of hyperbolae of mono-
tonically varying 6, and ¢ k - As y or "a" increases, 0k decreases
toward the limiting value of 7 /2 , corresponding to a particle of in-
finite energy (hence undisturbed by the attractive center), or to a
particle of infinite impact parameter (so far away that its trajectory
is undeflected). Or to say the same thing another way, with either
increasing energy or impact parameter, the axis of symmetry becomes
perpendicular to ;’-oo; and f , the half angle of the '"cone' of trajec-
tories increases toward 7/2 ., For decreasing y or "a'", '"a" or
y being held constant respectively, the cone of trajectories narrows
and the éxis of symmetry tends to become parallel to Vv, , resulting

in greater and greater scattering angles.

The Flux Zones

Let us assume that observations of fluxes and currents are
‘made on the surface of a sphere of a given radius, r . Once this
radius is chosen, a selection has been made of that portion of the in-
cident stream which can intersect the sphere. This establishes an

upper limit, a for the impact parameter for any given y , in

max °?
that trajectories possessing impact parameters greater than apsx

will not be affected enough by the attractive center to intersect the
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sphere. A lower limit amin is established for scattered '"radiation"
(particles that are crossing the surface of the sphere from the inside
to the outside) by the finite radius of the earth: Those trajectories
whose perigees are less than some rp (in some sense a radius of
the atmosphere) are terminated. Thus a spherical zone centered about
the 6= 0 line is screened from all scattered flux. Equation (45) im-
mediately provides these limiting values of the impact parameters,
viz.
1 . -1
!' V2 2 i 2 [amax ;(r)
a=r|l+ €r =r%1+2/ryi { (74)

: : . 2min = a(rA)

e

where vy, is the magnitude of the escape velocity at the point located

by r.

We consider the flux to be composed of three components, of
which one is called direct flux, ¢D , the other two being scattered
fluxes, ¢S and ¢é . At any point on the surface of the sphere of
observation, flux approaching the earth (i.e. has yet to pass through
perigee) is direct flux; flux receding from the earth (having attained
perigee) is scattered flux. For purposes of mathematical convenience,
scattered flux is considered to arise from two sources., Scattered
flux, ¢S , arising from particles whose trajectories lie wholly in the
same hemisphere!, is distinguished from scattered flux, ¢S, , belonging
to trajectories which penetrate both hemispheres. The zone,0< 6< 7 ,
defines the "upper hemisphere,' the zone, 7 < 6<2 7, defines the

"lower hemisphere."

! Strictly semi-circles in the plane; however, "hemisphere' is con-
ceptually helpful,
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is a zone,0 = 1955 0 i

symmetry.

This classification of the fluxes divides the surface of the

sphere of observation into zones as follows.

n

centered about 6 = 0

For finite TaA there

in which there is

only direct flux where 6,,;, is a function of y, r, and Ta

Next, up to a direction specified by 6= 0} ... thereisa

remain in the same hemisphere,

TABLE I

There is a spherical sector defined by |6|= 6,

zone upon which both scattered and direct flux, ¢S’ and ¢D , are
incident. For |6| > O« max there can be only scattered fluxes,
¢g and ¢ g
that particles entering the sphere through this sector, all emerge

from the other hemisphere; for 6, < ]9{ < O max all trajectories

Summary of Flux Pattern in Upper Hemisphere

Spherical Zone

Flux Components

Hemisphere in Which
Direct Fluxes Emerge

such

0 <'9159min d)D

s 4
emin<!9!567r ¢p + ¢5s
9W<§9%59kmax ¢D+¢S,

’
ekmax<l9‘<7r ¢S+¢S

intercepted by earth

lower

upper

no direct flux

The pattern in the lower hemisphere is the same because of

33
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At every point o1 the spherical surface we can now explicitly
indicate the flux field in terms of the associated impact parameters
(ap and ag or aS' ), their derivatives with respectto 0 ; cos anp ,
cos Qg , cos 015’ ; sin O and cos 0 , where the primes refer to
quantities associated with the lower hemisphere., To arrive at a
concision with readily comprehensible formulae, we must develop
some elementary geometrical relationships between the 0's and d's

and assume a convention for the latter.

The convention on @ will be that it is the angle from the in-
ward pointing radius vector to the directed trajectory, defined to be
positive in the counterclockwise sense. The trajectory is symmetric
about the axis 0 =0y ; thus the geometry at exit is identical to the

geometry at entry. Thus we can immediately write (See Fig. 12)

ag tap =7 @g and ap = 0 always . (75)

4 14

’
7  ap and @g = 0 always. (76)

where, as is the convention throughout, the prime refers to a trajectory
entering the other(lower) hemisphere. These relations imply corre-
sponding relationships between the impact parameters of the direct

and scattered fluxes.

By the geometrical symmetry, for every trajectory the following
relation holds between the angles made by the direct and scattered fluxes

at their point of entry and exit from a sphere of observation:

9D+QS

= Ok (77)
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If | QD = 0y (i.e. grazing incidence), then 6g = 0 ; if 6g=0,,
then 6p= 6; = 20y -7 . Note the introduction of 6; , the
angle of entry such that the trajectory exits at 6 = 7 ; there is an

associated value for the impact parameter a which will be deter -

T

mined subsequently.

Because the earth possesses an atmosphere of finite radius
r, » effective in stopping meteoric particles, not all zones of a sphere
of observation receive scattered flux. The impact parameter charac-
terizing the limiting trajectory can be easily found by taking the perigee

distance Tp=Tp in Eq. (70); thus

2

Yeémin
ry, = rp = e . (78)
P 1+ vi+ Yzamin
Therefore,
: 1
- )
a iy T r(l + 2/y.rA . (79)

This value of ''a' when substituted into the trajectory equation (Eq. 66 )
“yields

- Yalz‘nin (rA) - T (80)

cos (Q—Okmir)f- re(ra)

which is satisfied by two values of 6 . The minimum angle 6,,ip

at which scattered flux can be received, is the angle of exit of the
trajectory characterized by a,,in ; it is the larger of the two angles
just determined. In order to refer our result to the upper hemisphere,

we use 27 minus this angle instead of the angle itself,
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A similar use of Eq. (66), solving for impact parameter rather

than for angle, and recalling that impact parameter appears in €

s

yields
—
a = r iyl +— (81)
max ry ,
a, = er/y . (82)
where a_ .. is the largest value of the impact parameter permitting

a trajectory within a sphere of radius r ; and a; is the impact
parameter corresponding to that trajectory which exits from the sphere

at =7

The Conjugate Trajectories

In the foregoing we have discussed direct and scattered fluxes
without explicitly proving that, with the exception of a zone receiving
only direct flux (an effect due to the earth not being a point mass),
every field point is threaded by two trajectories, i.e., a direct and

a scattered trajectory, or two scattered trajectories.

The trajectory equation for given r and 6 is a quadratic
equation determining two values for the impact parameter. Thus,
using Eqs. (66) and (69)

ry sin 8 £ fr’y? sin?0 + 4ry(l - cos 6)
2y

(83)

Both values of '"a'' correspond to real trajectories. This is obvious

for the positive! "a'' , henceforth denoted by ay ; that a_ , the

'a and amax ©f the preceding section are both on the positive

branch of Eq. (72).
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negative value, also characterizes a trajectory, is evident from the

following.

Let a_= -a° and substitute in the trajectory equation obtaining

Ya;z
1 -cos @ -yad sin 6

(84)

which differs from our original equation by the sign preceding ya sin6
in the denominator. Next consider the transformation 6 = -6’ applied
to the original trajectory equation. Basically this amounts to changing
the convention for positive 6 from the clockwise to counterclockwise

direction. The result is

ya? R ya’

1 -cos 6+ yasing 1l - cos 8’ - ya sin 6’

(85)

which shows Eq. (84) does represent a hyperbola, in particular, one

which is the reflection over the line 6 = 0 , of

12

- ya
T " T - cos0+ya sin0 (86)

where "a’'' may be |a_|.

Thus, rewriting Eq. (84) in terms of 6’

ya'®
1 -cos 08" + ya' sin 6’

r = (87)
and we have recaptured the proper form. Evaluation of Eq. (87) at
the point (r, f) in the upper hemisphere requires that 8’ be replaced

o a1
LLiT e

3}
o
o}

by -85 (87) are

oa 1 ~
o a2 Mo

clockwise sense. One therefore has upon substituting a = -a_ as well,
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. = ya ® _ ya (88)
1 -cos(-60) + ya’sin(-6) 1 -cosf + ya_sin 6

which by definition is satisfied at (r,6).

Next it is desirable to relate the angles of entrance and egress
of the conjugate trajectories at any point, i.e,, trajectories inter-
secting at that point. Corresponding to Eq. (78) for any trajectory

incident on the upper hemisphere,

K (89)

for the primed or conjugate trajectory. The connection between OD

14
and 6p is immediately established by substituting (Fig. 13 )
6. = 0 (90)

for intersections at points where 6< 6 The resulting relation

k max -
is
6 6 20’
p ¥ 'p -~ ’
, (91)
6 = < .
D GS kaax
If the intersection is that of scattered trajectories, i,e., 06> Gk max

at the point of intersection, it is clear from Fig. 13 that Gé = bg .

Accordingly,
6 ’ + 91
_.D_.Z_ﬁ = Gk’ implies OD, + es=26k', (92)
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and subtracting Eq. (78), one finds

= > 6 3
6S 6S kmax °* (93)
Other interesting relationships can be readily derived; however,
our aim here is merely to provide a foundation for further analysis and
to introduce the concepts necessary for a succinct description of the

flux field in the next section,

Exhibition of the Flux Field

In order to make a brief comprehensible presentation of the
flux field, we rewrite the formulae for the basic parameters along

with explanatory remarks,
The basic equation is Eq. (62)

a da
J(r)/J°° " r2 gin Hcos a6 (94)

wherein all quantities have been previously introduced with the excep-

tion of da/d @ .
From Eq. (83)

ry sings k'y? sin? 0 + 4yr (1 - cos 0)
2y

a =

ay corresponds to contributions to direct flux upon entry of the tra-
jectory, and to flux scattered in the same hemisphere (as it entered)
upon exit of the trajectory; a_ corresponds to scattered flux that

entered from the other (lower) hemisphere.
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o
o

i 2 . .
L ' r cos 6 % (? y005951n0 41-2r‘s1n6)‘
2 { fr vy sinz 6 1 4yr (1 - cos 9)

(96)

[o N
D

™
!
]
H
i
This derivative must be evaluated for the calculation of flux at a point;
however, for applications involving integrations over the sphere's
surface, the d6 can usually be divided out into the df of the surface
element, to convert an integration over 6 into a simpler one over

impact parameter. The derivative da/d0 is positive for direct flux

contributions and negative for scattered flux.

Finally, cos a as derived in Eq. (65), is for direct flux in the

upper hemisphere. More genérally

[N

r
yir? + 2yr - y*al
y¢rz + 2yr

cos a4 =t

(97)

where the + subscripts on @ correlate with the sign in front of the
brackets, and n_otwith the choice made for "a" — i.e. a; or a_

Of the various possibilities only the following are of immediate interest;
the others correspond to symmetric trajectories describing identical

situations in the lower hemisphere.

For direct flux 9p a = ag
a=0p; 0 < aD <7/2 ; 0< cos an = cos a (98)
For scattered flux ¢g a = ay
a=aS=7r-aD;7r/2<a/s;cosafs=-cos01D=cos0’_

(99)
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For scattered flux ¢L§’ a = a

’
o = a/S' = -ﬁ-al; : O<_Q/D,<7r/2; SO , 0>cosa/S=COSQ/_
T/2 < -« (100)
S
where aﬁ refers to direct flux incident in the lower hemisphere. .

These relationships can be directly obtained from Fig. 12 if one keeps

in mind our convention on the sign of «

This development permits one to consider any individual flux
!
component contribution — e. g., (bD , d)S , and ¢S , or components
in any given direction, such as tangential and radial flux currents as

they would be encountered by a detector.

Thus the inward radial flux is given by

J(r,r) = ¢

cos «
D .

and the counterclockwise tangential component by

(T, -0) = ‘f’s: | sin oz]S

~

where 6 is the unit vector normal to r . To calculate the flux as
it would be measured by a moving detector, one must apply the formulae
from the later section on detector motion to these results, which are

valid only for a detector at rest with respect to the attractive center.

Finally, in considering the total flux at a point we must add
the magnitudes of the various contributions since the scattered and .

direct radiations are assumed incoherent.
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Thus, -

ay da+
0<6< Omin 3¢(r,0) = ¢p =

r2 sin 6 cos o3 46

4
6min<6< 9kmax$' ¢ = |¢D| +|¢S‘ ;

¢ ay da4 ’ + a3, lda-\
D = r2 sinf cos o db ’¢S—+r2 sin 6 cos «_ 1d6_’
4
Ok max<0<T 5 |dl= 5| +]|d5]
-ay day |
¢S " rz sin 6 cos 2_ dG’5
’ +a._ da !
d’S " r2 sin 0 cos a_ do (101)

where in da +/d6 the + identifies the sign to be taken in evaluating
Eq. (96). Under the conventions we have assumed, a flux contribution
is inherently positive if particles are entering the sphere of observation,

and negative if it corresponds to departing radiation.

Verification by Direct Calculation of the Result Obtained From the

Application of Liouville's Theorem to Monoenergetic Isotropic Distributions
In this section the formulae of the preceding discussion which

were obtained for the monodirectional case, will be integrated over

the surface of the sphere of observation to obtain averaged values of the

direct and scattered fluxes. These will be simply combined by adding

4 - N, P
Lilclir IIlngllLuqu, dDliuLc v
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sum will be identified with the radial distribution of flux obtained in
the second section of this paper, thus, for the isotropic case, obtaining

independently the result, that the radial dependence of the flux is as

o2

() /b() = {YV‘—” =14 = (102)

We shall ignore the small effect due to the finite size of the
scattering center. At each point there are two flux contributions, as
has been discussed in detail. In developing these integrals, we will

rely heavily on the previous development and on Fig. 11.

We desire

- s (lgam oy

The 6 integration is the only one of a non-trivial nature; and whatever
difficulties this might entail we avoid entirely by converting the integrals
to ones over impact parameter rather than angle. The flux ¢ (r) assumes
different forms for the two major regions in the upper hemisphere, viz

<
0<6<86 k max

6 < 7 where there are scattered fluxes only.

where there is direct and scattered flux; and 9k max <

m
((;f’_r/\, = [é(r) sin6ab (104)
b o
where 6 1+ 19 6 < 6
JI plt %5l = "k max
6x) =3 : (105)
Psl+1dsl Plmax 0T
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Thus

) s kmax == P s
{(b(r)smede = j(; M’DH@S!} sin 6d6 + f{|¢s|+§¢s|}51n6d9 .

max (106)
’

where ¢p , ¢g , and ¢g are given by Eq. (101). They are functions
of a, , cosa,, and &ai/de specified by Eqs. (95) through (100)—
altogether an unfriendly integral! In principle one could substitute
these functions and straightforwardly perform the integration over 6
However, this we avoid by noticing that all integrations can be done
over impact parameter — for, (da/d6)d6 is common to all integrands,
Furthermore, since we are interested only in total contributions, the
separation into components as indicated by Eq. (104) is not necessary

and indeed is not the most advantageous representation.

Expressing the integrals in terms of impact parameter

k max Amax
r? f ¢, sin 6 d6 "f 24 day
D cosoy
0 0
, 9% max r » T, -
r j(‘) ¢S sinf d6+ r fd)s sin 6 d6 =
a ekmax
o - na da
r? [ ¢ sin 0d6 —~ [ Z=—==
0 0 coso_

’
since all ¢S contribution arises from conjugate trajectories entering

the lower hemis phere at angles from 0 to -6, (see Eq. (77) et sequens).
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T Ok max amax
r? f ¢S sin 6d6 = r? f ¢S sin 6 d@"’f a d2.+
% max 0, ar cos a;

since the total ¢s contribution enters the sphere as direct flux pre-

cipitating in the region 6, <6<6,
Now it is obvious that the + subscripts are meaningless (i.e.,
Therefore, recognizing that cos @4

are dummy variables.
a_., we can write

the a's
and cos @ have the same functional dependence on
7 !‘ 2max T ar amax
rl fd)sine dg = i ada f ada f ada
0 | 0 cosa 0 cosc ar cos @
(107)

Since we are concerned only with magnitudes, we may replace

ada -a a
since in this example, f = - f
0

"aﬂ- a7r
ada by f
cos o COs o
0 0

a
maxada

Then

T 4/ Amax

f ¢ sin 6d6 = —17 \ ada f

0 r r :\ 0 cos & 0 cos @ ;
or

T amax
. _ 2 ada
g . sin 6d8 = = [ e (108)
N y2r? + 2yr
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Finally, from Eq. (106)

o0 (erz + ZYr) f - 2y* ada

= 1
oo T oriyz yzrZ + 2yr - yza?)2

1
2.2 2
r® + 2yr
-y == yr) (y?r? + 2yr - y2a?) -
Y 2max

(S

1
ir? 4 2yr) - (yPr? 4 2yrP[y®r® + 2yr - (yPr? + 2yr)]

r2y?
(109)
where from Eq.( 74)
1
[ 2
a = r;l+—:, all reducing to
max vyl
/¢(r)‘ r? + 2yr { 2\
= = {1 + —|
¢ / YZ rz ryl
in full agreement with Eq. (20), the Liouville theorem result.
2
Or, substituting y = % and recalling Eq. (6)
e VR g LN
b/~ yr r2 - rvZ - \ .
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Effect of Detector Motion on Impact Rate

The motion of a particle detector changes both the energy and
the direction of particle impact. Anyone who has ridden in a car at night
during a snowstorm knows that, as the car gains speed, the snowflakes
appear to arrive more and more rapidly from the forward direction. If
we measure the rate of meteoroid impact from a moving satellite, we
must know how to correct for the effect of satellite motion on the count
rate and how to compute the increased penetration hazard faced by a

vehicle because of its motion through space.

For purposes of computation, let us assume that we have two
coordinate systems, one in which the radiation distribution f'unction
N({r, v) is to be determined. As shown in Fig. 14, a particle is located
in the first system by a position vector T and in the second by a posi-

! The vector R locates the second system relative

tion vector r

to the first. By vector algebra

! (111)

ol
_{..
|

T =

and by time differentiation

v o=V o+ (112)
In the following discussion, we will assume that R is zero but that v

is not, so that

T = r' (113)

By performing the scalar product of ‘each side of Eq. (112) with itself,

we obtain
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vi = V24 2 + 2VV cos ¢ (114)

Transposing V in Eq. (112) and repeating the operation, we obtain

vizZ = V¥ + V2 -2Vv cos O (115)

The angles 6 and 8’ are as shown in Fig. 15. These equations re-
late the kinetic energy of a particle in one system to its kinetic energy
in the other. Furthermore, they are easily solved to obtain the épeeds
and directions observed in one system (v', 9') in terms of their un-

primed analogues (v, 6 ).
From Eq. (114), we have

2 r2

c0s §' = Y~V -ve
2v' v ’
and substitution for v’® from Eq. (115), followed by defining z :VV
v
(shown as z = \? in the figures simply to avoid confusion), yields
cos b’ = zcos 6 -1 (116)

\/22‘+ 1 -2z cosA—G
This fleationship is shown in Fig. 16 for several z values.

In the primed system, the speed of a particle described by
v (v,6) in the unprimed system, results by solving Eq. (114), which
o

is a quadratic in v’ . One finds

’
——%— = \/zz + cof 6’ -1 -cos 6 (117)
Vo
where z = —~ 2s before, and we have taken the positive root — the
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negative Vv not being required in our development. One could substitute

(4
\'4

v H
however, this is not necessary for our purposes. Equation (117) is

cos 6’ from Eq. (116) to obtain the relation between z and z'=

plotted in Fig. 17 for the same z values used in Fig. 16. One notices

in the region z<1 that for a given 6’ and fixed z there are two solu-

tions for vg and 6 ; an associated double valulessness exists in Fig. 17.

In relating the distribution functions N(r,v) and N’ (¥, ¥),
it is convenient to choose coordinate systems in such a way that the
position v-'ector r and the azimuthal angle ¢ are unchanged by the
coordinate transformations. These conditions are met in Eq. (113).
Because of the invariancy of the particle density to Galilean trans-

formations
N(r)= [[f NE,v)av = [ff N(E, V) av = N (F) (118)
R R

By using the special conditions on our coordinate systems and the sub-

stitutions

B = cos6, u’ =cos ¢’ (119)

we can write the equation for particle density more explicitly as

[ NGE v, ¢ YV avdpdg = [NV, )L e W2av af dé. (120)
R R’
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Transforming this last integral over the primed coordinates

to the unprimed coordinates, one has
[/ N[*,v.u'¢] v?dv'du'd¢ =
’
R

[[f N [T, (v, p (vip) o] a—a(l(/?/%’))' v (vp) dvdpdé (121)
R

or

fﬂN'[;,v’,u’,(b]v’Z dv dp’ dé f{f N [T, v/(v, p)plv, p)é) v¥dvdy dé
R

where

_8_(__y__) = Y (122)

is the Jacobian of the transformation! implied by Eqs. (114) and (115).

This result arises from the intrinsic properties of this trans-

formation and is valid for any well behaved function of v’ , p’

Thus any integral of the form

[ff £ 1r.vp . ¢] v av'du’ dé (123)

! Courant, Differential and Integral Calculus, p. 252.
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can be computed in terms of the unprimed coordinates by

[ fr,v'(vip ),/ (v,p 9] v2 dv dp dé (124)
R
which may be more tractable,

Therefore expressing the integral over the primed coordinates

in Eq. (118) in terms of the unprimed coordinates,

[[f N[r,v.p.¢lv? davdpds = [[| N[, v(pop’ (uv)¢] v? dvdp dé,
(125)

since Eq. (125) is valid for arbitrary pairs of associated regions R

’
and R , one has

N[T,v,pug] v¥ = N [T,v'(uv), o’ (pw)¢] v

or

ES
N[z,v,u¢]l = N [T,v(pv), p'(pv)é] (126)

For the particular case of uniform monoenergetic monodirectional

radiation of speed v, ,

N(I‘_,V,lJ,,(b) = Cbé ~(V"Vo) 6(“ -IJ,O)(S(QS - ¢O) (127)

and the particle density N(r) and flux ¢ (r) are given by

fff N(;,v,u, é) vZ dv du d ¢ CvoZ (128)

Cvg (129)

[f vNE v p, ¢) v? dvdpdé

A similar relation can be obtained by interchanging primed and un-

primed variables.
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In the other coordinate system, using Eqs. (115) and (125),

1
v = [vz + v? -sz]'z (130)
and
- 1
2
¢'(r) = [[[|V? + v? -zva] Co(v - vg) 6(1 - Ho) 8(0 - 6o) v2 dvdudé
[ z
= C -vz +vZ - 2Vv, po] v2 . (131)
The ratio
——— 1
¢'(r) VAL \'A B _
o - 1+(V_o - 2lo=] Ho (132)

represents the multiplication factor for the flux as a function of detector
motion, Figure 18 shows this effect for several values of V/v, and
Ko - This result could of course have been obtained by more elementary

means,

If the radiation is spatially uniform, monoenergetic, and isotropic,

we can write
N(r,v) = C 6(v - vg) . (133
The particle density N(r) and flux ¢(r) are given by

N(1) ﬂf Cé(v - vy) vt dvdud¢ = 47Cv¢2 (134)

6@ = [[| Co(v-v,)vidvdpdé = 47CvS  (135)
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In the moving system, we are able to write, by the same reasoning

as before, that

1

$lr) = fff [VZ + V2= sz}z Cé(v - vg)v: dvdp dé (136)

The integration over v, t, and ¢ yields

2 3 23]
¢'(r) = %(;—VQ [IVO+V| - | VO-VI | (137)

The absolute value signs are used because v/ must always be positive.

For vy <V, substituting Eq. (135)

¢'(x)/d(r) = (V/vg+ vo/3V) (138)

and for vg >V

$'()/d(x) = 1+ (1/3)(V/vo) (139)

il

A graph of the effect of satellite motion on the isotropic monoenergetic

particle flux is shown in Fig, 19,

The total kinetic energy in the two systems is given by

<T,) = —12- m [ff v* N(T,¥)v* dv dp d¢ (140)
<t = .;. m [[| V2N(T,V) v? dvdpde (141)
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For the monodirectional monoenergetic case, the ratio of Eqs. (140)

and (141) is

Ko . (141)

<G> /<= 1T = 1+‘1’—-

Yo

2
_2(1
Vo

For the isotropic monoenergetic case

<T>/ <t = 1+(vlolz : (143)

Graphs of these functions are shown in Fig, 20 and 21,

SUMMARY

The foregoing discussion has been in the form of a general survey
to illustrate the magnitude and nature of some of the problems associated
with measuring meteoroid flux from moving satellites, The application
of the Liouville theorem represented an extension of a practice common
to the treatment of charged particles in electromagnetic fields and the
treatment of the structure of the flux field constituted an extension of
the asymptotic discussion of the Rutherford scattering problem involving
Coulomb repulsion to the region near an attracting force center. The

problem of the orientation of a non-spherical detector was not considered.

An attempt will be made to apply the techniques developed here
to the detailed interpretation of the count rate measured by the Saturn-
boosted micrometeoroid satellite. Statistical methods must of course
be developed to bridge the gap between the analytic streams assumed

here and the paucity of counts expected from the coming experiment.
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A mathematical basis for discussing such subjects as the
focusing of meteoroids by the earth has been provided, but considerable
work still remains on the problem of ﬁsing measured distributions,
with no velocity or direction information, to estimate the meteoroid
flux at infinity. -
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